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ABSTRACT 

The effect of interaction (coupling) between the Primary (P) and light 
secondary systems on the maximum responses of the secondary systems is 
studied. Some of the problems and fallacies associated with the con-
ventional modal analysis approach are discussed and pointed out. The 
need to discontinue using this approach in cases where light secondary 
systems are in resonance with the primary system is explained. 

Upper and Lower bounds for the responses of the Secondary (S) and 
Second-Secondary (SS) systems have been developed and presented. The 
upper bounds were found to be dependent on the sum of mass ratios while 
the lower bounds are independent of mass ratios. 

Amplification Factors for a coupled P-S-SS system which accounts for 
mass ratios effects such as those shown in Fig (4) of the paper have 
been developed. These amplification factors which are developed for a 
particular damping value and a particular modal combination rule show 
a substantial reduction in secondary systems response with the in-
crease in mass ratios. 



NOMENCLATURE  

A = Acceleration value of an input response spectrum 
(constant) 

[C] = Damping Matrix 
[C] = Modal Damping Matrix 
CSM = Closely Spaced Modes 
[K] = Stiffness Matrix 
[M] = Mass Matrix 

• Primary System 
P P

2' 
P
3 • Response of 'P' by absolute sum, SRSS, and by 

algebraic sum respectively 
• Secondary system 

S S
2' 

S
3 • Response of '5' by absolute sum, SRSS, and by 

algebraic sum respectively 
SS = Second-Secondary system 
S
1,  2 

S'
' 3 
S' = Response of 'SS' by absolute sum, SRSS, and by 

algebraic sum respectively 

wl • Frequency of the P-system or one of its modal 
frequencies 

w2 • Frequency of the S-system or one of its modal 
frequencies 

w3 • Frequency of the SS-system or one of its modal 

- - -
frequencies 

a1, w2' w3
• Frequencies of the coupled P-S-SS system 

• Ratio of the modal mass of the S-system to the 
modal mass of the P-system 

• Ratio of the modal mass of the SS-system to the 
modal mass of the S-system 

El' E2' E3 • Eigenvalues shifts (Fig 2) 

• Mode shape vectors for first, second, and third 4)1' °2' c°3 
modes 

a = Damping ratio 

INTRODUCTION 

Practical design considerations necessitate many systems in a Nuclear 
Power Plant (NPP) to be decoupled for the purpose of seismic analysis. 
This is customarily done for the following practical and technical 
reasons: 

a) The secondary system analysis is typically the responsibility 
of a sub-contractor while the primary system analysis is the 
responsibility of a main contractor. Thus the breakdown into 
secondary and primary systems follows the actual breakdown of 
responsibility. 

b) The detailed combined model of the seondary and primary systems 
is typically large, too expensive to run and prone to human 
errors. 
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c) The design of the primary system typically precedes the design 
of the secondary systems. The dynamic data available on the 
secondary systems at the time of the analysis of the primary 
system does not justify a detailed coupled analysis. 

d) Most important for very light secondary systems compared to the 
primary system, the credibility of a coupled analysis may be-
come questionable numerically. This is true whether a time-
history or a response spectrum approach is used. 

e) Major state-of-art difficulty exists in assigning modal damping 
values for systems which have different damping ratios. An 
elaborate detailed model may not be consistent with the adequacy 
of the damping data used in formulating the model. 

Thus, the assumption of decoupling, if proven valid and resonable, will 
alleviate these practical and theoretical difficulties. At present 
there exists a number of decoupling criteria available in the industry 
to define to the designer the conditions under which decoupling is 
acceptable. These criteria (1,6,7,8,9) are based on the concepts of 
modal mass ratios and frequency ratios of the secondary and primary 
systems and are shown in Figure (1). 

In many occasions the designer may encounter a light secondary system 
which is supported by another secondary system which in turn is suppor-
ted by a primary system (e.g., a light equipment which is supported by 
another equipment which in turn is supported by a building). Studies 
for the coupling effects in this popular practical situation is almost 
non-existent at present. This is primarily because of the mathematical 
difficulties and the large number of variables encountered in the prob-
lem. To differentiate in the following discussion between the two 
secondary systems, the supported secondary system will be termed 'SS' 
(for Second-Secondary) while the supporting secondary system will be 
termed 'S' (for Secondary only). The letter 'P' will be used to 
describe the primary system. A combined system which consists of the 
primary and the secondary systems will be termed a P-S-SS system. 

REVIEW OF RELATED WORK 

Very little is found in the literature on the coupling phenomena for a 
P-S system in a seismic environment. Crandell and Mark (5) studied the 
effects of mass ratio and frequency ratios on the mean-square response 
to an ideal white noise input. Their results showed that the response 
of both the P and S systems are reduced by a coupled analysis, even if 
the two systems are in resonance (an exception; the relative displace-
ment of the primary mass may increase slightly). Pickel (6) proposed 
some general guidelines for the maximum mass ratio for decoupling to 
be reasonable for each frequency ratio. Hadjian (7) suggested graphi-
cal decoupling criteria which are more consistent. Aziz and Duff (1,2) 
presented a family of decoupling criteria which are consistent, ratio-
nally derived, and continuous functions for any mass ratio and any 
frequency ratio. Newmark (12) introduced the concept of the inverse 
of the square root of the mass ratio as an upper bound for the ampli- 
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fication in the secondary system response. Gelman (10) provided inter-
action factors to be used in the seismic analysis based on the SRSS 
rule; his use of the SRSS rule is open to questioning. Suzuki (11) 
conducted a study for a two degree-of-freedom system with mass ratios 
ranging between 0 and 0.1 under twenty actual earthquakes. His results 
showed conclusively a substantial reduction in the response of the 
secondary system with mass ratio. Kelly and Sackman (3) proposed a new 
summation rule for the two closely spaced modes which appear in a P-S 
system (2). All these studies have been treating a P-S system only. 
Studies for a P-S-SS system have not existed to the author's knowledge. 
It is the objective of this paper to provide an understanding of the 
behaviour of this system in a seismic environment. The work is an 
extension of the previous work reported in References (1), (2) on a 
P-S system by Aziz and Duff. 

EIGENVALUE ANALYSIS OF A P-S-SS SYSTEM 

The starting point for any study in mass coupling effects for a P-S-SS 
system is the three degree-of-freedom system shown in Figure (2). 
Although the Figure depicts a simple three degree-of-freedom system, it 
should be interpreted as a modal three degree-of-freedom system repre-
senting any three modes, one for the P-system, one for the S-system and 
one for the SS-system. The characteristic parameters for this three 
degree-of-freedom system are cal, the frequency of the P-system or 
alternatively one of its modal frequencies; w2, the frequency of the 
S-system or alternatively one of its modal frequencies; 6:3, the fre-
quency of the SS-system or alternatively one of its modal frequencies; 
the mass ratio p which is defined as the ratio of the modal mass of the 
S-system to the modal mass of the P-system and the mass ratio y which 
is defined as the ratio of the modal mass of the SS-system to the modal 
mass of the S-system. Obviously, if the P, S, and SS systems are of the 
one degree-of-freedom type, the modal mass ratios are the same as the 
actual mass ratios. This is not generally true for multi-degree-of-
freedom systems. 

For space limitations, only the case when w3  = w2  = wl  (resonance case) 
will be presented here. Similar treatment can be done for the non-
resonance case (w, 0 w2  0 w1). The resonance case is more important 
from the practical point of view since it leads to the highest amplifi-
cations. 

The coupled system shown in Figure (2) exhibits three frequencies 1;1, 
w,, and a3. The shift of the eigenvalues (squares of the frequencies) 
of the coupled system is given by el, e2, and e3  respectively (Figure 
2). 

Limiting the presentation for the case of resonance and small mass 
ratios (i.e., p « 1. and y < < 1.); it can be shown that: 

el ; -4777  
PY  

e2 - (11 + y) + Y 
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E
3 
= +IV/71-y (3) 

This suggests that the spread in the square of the coupled frequencies 
is dependent on both p and y; (equals 2 V577). Even when p and y 
(modal mass ratios) are as small as 0.01, the spread in the square of 
the coupled frequencies is 28.28% and the spread in the coupled fre-
quencies is 14.14%. Thus a coupled model even in this case utilizing 
a time-history approach will produce results which are very much 
dependent on the specific nature of the frequency content of the time-
history used in the neighbourhood of the frequencies of the system. 

MODE SHAPES AND PARTICIPATION FACTORS  

The mode shapes and participation factors for the case of resonance and 
small values of p and y can be approximated by: 

(1)11 1.0 

-•• 
4)1 021 

, r1 (4) - 2(y y) 

031 
1 

4512 1.0 

4)2 
4)22 r 

2 (5) 
V + Y (V +Y ) 

4)32 
- 1 

13 1.0 

03 023 
r 

3 
(6) 

- 2(p + y) 

1.1(77—F Y  t-  
433 

1 

The following observations can be made: 

(a) 1 
+ r2 + r3 = 1.0 

This is a direct result of the fact that E r Of  is unity 
for a system subjected to ground motion 

(b) Lim r
1 Lim r3 = 1,5 (For any p > o) 

Y+0 Y4'0  

Lim r
2 

1+0 
(For any p > o) (9) 

The problem becomes identical to that treated by Aziz and Duff 
in Ref. (2) 

(7)  

(8)  



(c) Lim r1 
 = Lim r

3 
= o (For any y > o) 

1.14o U+0 

Lim r
2

1.0 (For any y > o) 

(d) Lim r
1  6 .21

= - Lim r3 +23 = 
CO 

114.0 114.0  

Y4'0 Y÷0  

Lim r 6 
1 '31

= Lim r3 033 
11-010 1.14.0 
1+0 1410  

= - Lim r
2 032 = =

(13) 
1.1+0 
1+0 

RESPONSE ANALYSIS  

To achieve an understanding for the response of the coupled P-S-SS 
system, an input response spectrum of constant value 'A' will be 
assumed (for example the constant acceleration branch of a typical 
ground response spectrum). The damping attached to this constant value 
'A', as demonstrated later, is the average modal damping of the P, S, 
and SS systems. The response of the P, S, and SS systems can be ob-
tained by different modal rules as follows: 

(a) Response of the Primary System (P): 
Response of 'P' by absolute sum, SRSS, and by algebraic sum will 
be denoted P

1, 
P
2' 

and P
3 

respectively: 

P1 = Ir21 Ir31)A = A  
(14)  

p

2 

 /

r1

2 r

2

2 r

3

2 A  < A (15)  

P3  = (r
1 
+ r

2 
+ r

3
) A = A (16)  

(b) Response of the Secondary System (S): 
In a similar manner, S1,  Sc,,and S3 

are defined as the response
f the secondary system 'S by absolute sum, SRSS, and by alge- 
braic sum respectively and is given by: 

1 
1  

A (17) 
/777 

1 A 
S
2 

= (18) 

S3  = A (19) 

(c) Response of the Second-Secondary System (SS):  
In a similar manner, Si, S2, and S; are defined as the response 
of the second-secondary system 'SS/  by absolute sum, SRSS, and 
by algebraic sum respectively and is given by: 
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2  
S= 

(11+Y) 

/7177 S
2 

- 
(P+Y) 

S3  = A 

For systems which are subjected to earthquake ground motions, the ab-
solute sum represents an upper bound for the system response while the 
algebraic sum represents a lower bound. It is interesting to note that 

an upper bound for the S-system response is 4==; while an upper bound 
2A " Y 

for the SS-system response is 
(p+y). 

 The lower bound response is only 

A for both the S and SS systems. Of course the upper bounds and the 
lower bounds are far apart. The upper bounds for the S and SS system 
can be improved by applying the SRSS rule which leads to a reduction 
of approximately 29% and 39% in these upper bounds respectively. These 
upper bounds are extremely useful if p and y are very different from 
each other, although both are still small quantities, since the res-
ponse will be somewhat governed by the largest of them. 

For small mass ratios (i.e. u <<1. and y<<1.), the three resulting 
modes for the P-S-SS system, are closely spaced. Thus if an absolute 
sum of the modes is performed as the normal practice in the industry 
(13), the calculated response of the secondary systems may be unreali-
stically high, and actually may be higher than that obtained by a de-
coupled analysis. Thus a conventional modal analysis utilizing a 
coupled model with very small mass ratios may result in both unreali-
stic and erroneous results, and therefore should be discontinued. On 
the other hand, using a time-history analysis would lead to more 
realistic results. The problem is that the results are realistic for 
a particular time history. Even when the time history is a spectrum 
compatible one, the way closely spaced modes interact (add or subtract) 
will depend to a great extent on the nature of the time history. The 
fact that modes do combine differently for different time histories 
should not be overlooked in this regard. 

COMBINATION OF TWO CLOSELY SPACED MODES  

Mass coupling effects lead to closely spaced modes. It is extremely 
important to devise a way to combine two CSM accurately rather than by 
the absolute sum method which is extremely conservative for the secon-
dary systems responses. Of particular importance is the case where 
the two modal contributions are equal but of opposite signs. The dis-
cussion in this section will be restricted to the case of two CSM only, 
which have the same amount of modal damping W. The first mode con-
tribution is Q1, and the second mode contribution is Q,;  where Q2  = 

= A. Kelly and Sackman (KS), provided a solution for the combined 
response 'Q' under such condition and is given by (3): 

IQ1I+IQ2 I 2A 
R =  R 

A 

A 

Q - (23) 



Qi  -Q. 
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R is a reduction Factor to be applied to the absolute sum of the two 
modes and is given by: 

R = 

where: K 

E 

,67:7 
eE
K 

arctan (E)  
E 

Aw 
28 

(24)  

(25)  

(26)  

Ac = the difference between the Frequencies of the two CSM 

Figure (3) shows the behaviour of the reduction factor 'R' withilEi 
(for a two degree-of-freedom system as studied by KS (3), Q1  = -2-- ; 

, / —u 1.1 7i 
Q = 

-1 
.; E = --= ) 

2 • 2 21/ 8  

For small value of E ; R = (27) 

Newmark and Rosenblueth (4) presented a general method for combining a 
number of CSM. The method is given by the equation (using the same 
notations as in Ref (4)). 

Q
2 

= E Q,
2  
+ E E 

i iOj 

For the case of Qi  = -Q2  = A; 

Q 
1+E 

(2—E 2 A 
2 R 

. =  

where: R' 4 .1777  12-7  
E 

R' is a reduction Factor to be applied to the absolute sum if the 
Newmark and Rosenblueth (NR) method is implemented. 

For small values of E; R' = 
E 

It is clear that the two reduction Factors of KS and NR are different. 
Fig (3) shows the behaviour of the reduction Factor 'R" of NR with 
'E'. 

The most important conclusion here is that the NR method is more con-
servative than the KS method. For small values of E the predictabil-
ity of the two methods is comparable within the factor Tiw 

In view of this difference, it was appropriate to use the NR method 
which is the most conservative of the two. Another less obvious 

(28)  

(29)  

(30)  

(31)  



reason is the fact that the KS method is, strictly speaking, applicable 
to a beat phenomenon generated by only two CSM. Extending the concept 
to three CSM is not a straightforward process. 

AMPLIFICATION FACTORS FOR P-S-SS SYSTEM 

Utilizing the mode shapes and participation factors as developed before 
for the tuned P-S-SS system, it is possible to develop Secondary 
Systems amplification factors by modal analysis. It is proposed in 
this modal analysis that the NR method is used and the damping is 
taken as the average value for the damping in the P, S and SS system. 
As an example, the acceleration responses of m', m, and M for a unit  
ground acceleration and a constant modal damping of 3% have been de-
veloped and are presented in Fig (4). (In this Figure the system was 
assumed to be in the constant acceleration branch of the ground res-
ponse spectrum with an amplification factor corresponding to 3% 
damping of 3.5). In view of the fact that the response of m is domi-
nated by the first and the third modes, with negligible contribution 
from the second, the response of m was calculated by the KS method as 
well, and is presented in Fig (4). 

It can be observed from the Figure that the reduction in response due 
to mass ratios is negligible for mass ratios (p+y) lower than 0.001 
(being less than 15% for m' and less than 12% for m). 

For mass ratios greater than 0.001, a substantial reduction in response 
does occur. This reduction is more pronounced for m' (SS-system) than 
for m (S-system). This  can  be explained by the fact that the response 
of m is dependent on Ap+y) which is a somewhat slower variation. It 
can be observed from the Figure also, that the response of m' for the 
resonance case and small mass ratios can be extremely large. However, 
it is believed that the perfect resonance case for three systems in 
cascade is extremely improbable for actual nuclear power plants systems 
which have some nonlinearities in them. By normalizing the response of 
m' to the response of m, third level amplification Factors can be 
calculated. (These amplification Factors are analogeous to the First 
Level amplificiation Factors associated with the Ground Response 
Spectrum or the second level amplification Factors associated with the 
Floor Response Spectrum). These amplification Factors are plotted 
also in Figure (4). 

MODAL DAMPING 

When the equations of motion are uncoupled in a conventional way by 
using natural coordinates, the resulting damping matrix for the problem 
under study becomes: 

[E] = modal damping matrix 
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.1
T  
[C] 41  [C] 41  41  • [C] 43  

4 3. • EM I (1) 1. 4)]. fi. EMI (1)1 

42  • [C] 4 02  [C] 02  42  • [C] 03  

42 • [ll] 4 2 42 EMI  42  42  • [N] 42  

• [C] cp l 43  [C] 42  43  • [C] 43  

43  • [M] 43  43  [M] 43  03  [M] 43  

[C ] = 

(32) 

Where [C] and [M] are the conventional damping and mass matrix for the 
system. Modal analysis by definition involves neglecting the off-
diagonal terms in the above matrix or alternatively choosing [C] matrix 
to make these off-diagonal terms vanish. In this case, the equations 
of motion become uncoupled in a conventional way, and the modal damping 
values Bi  for the three modes are given by: 

•[C] 
2.f 
i 
 (7). - (i = 1, 2, 3) (33) 
1 

0i (P i  

The above approach is consistent with the concept of modal analysis. 
It leads to modal damping values which are somewhat weighted average 
of the damping values in each component. Other weighting Functions 
such as the strain energy or the kinetic energy can be implemented as 
well. To avoid introducing artificial differences due to the imple-
mentation of an approximate modal damping scheme, an average damping 
value of 3% was used in the current study and was maintained through-
out. 

CONCLUSIONS  

Based on the current work the following can be concluded: 

(a) When conventional modal analysis is applied to a coupled model 
consisting of the secondary systems and the primary system at 
resonance, the responses of the secondary systems determined by 
the absolute sum rule or the SRSS rule rends to = when the mass 
ratios (0-0 tends to zero. Thus a conventional modal analysis 
utilizing a coupled model with very small mass ratios may result 
in both unrealistic and erroneous results for the secondary 
systems responses. The practice of using elaborate coupled 
models for seismic analysis of very light equipment and piping 
should not be encouraged when using conventional modal analysis. 

(b) Secondary systems responses obtained by decoupling from the 
primary system are always conservative. The degree of conserva- 
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tism increases with the mass ratios. The degree of conservatism 
is more for an SS-system compared to an S-system. 

(c) The main governing parameter for the behaviour of a P-S-SS 
coupled system at reasonance is the sum of mass ratios (p+y). 
This is analogous to the mass ratio p governing the behaviour 
of a P-S system as explained in References 1 and 2. 

(d) An upper bound response for the SS-system does exist and is 
equal to  times the primary system response. An upper 
boynd resAng6 for the S-system does exist also, and is equal to 
ip+y times the primary system response. These upper bounds 

represent an absolute sum for the modes and are therefore very 
conservative. A lower bound response for the S and SS-system is 
equal to the primary system response. This lower bound can be 
obtained by taking an agebraic sum of the modes. 

(e) The response of the primary system obtained in a coupled analy-
sis by the SASS rule may be deficient. To overcome this de-
ficiency, closely spaced modes generated in this coupled analy-
sis, should be summed by an adequate modal summation rule such 
as that of Newmark and Rosenblueth (4). 

(f) Reduction Factors for absolute sum response, obtained by Kelly 
and Sackman's method are different from those obtained by 
Newmark and Rosenblueth's method. The newmark and Rosenblueth's 
method was found to be more conservative and thus is recommended 
for practical applications. 

(g) Amplification Factors for a coupled P-S-SS system which accounts 
for mass ratio effects can be developed for a particular damping 
value and a particular modal combination rule. These amplifi-
cation Factors such as those presented in Fig (4) show a re-
duction in response with the increase in mass ratios. The 
response reduction observed in an SS-system is more than that 
observed in an S-system. 
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